H2 Maths Notes (JC 1-2): 3.2) Scalar and Vector Products
Download printable cheat-sheet (CC-BY 4.0)07 Oct 2025, 00:00 Z
Before you revise\ Keep a checklist of formulas: dot product, projection, cross product determinant, and triple scalar product. Write them out at the top of every practice set until they become automatic.
Scalar (Dot) Product
- Definition: \( \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = \lVert \vec{a} \rVert \lVert \vec{b} \rVert \cos\theta \).
- Use to compute angles or test perpendicularity.
- Projection of \( \vec{a} \) onto \( \vec{b} \): \( \operatorname{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{\lVert \vec{b} \rVert^2} \vec{b} \).
Example -- Projection length
Given \( \vec{a} = \begin{pmatrix} 3 \ -2 \ 1 \end{pmatrix} \) and \( \vec{b} = \begin{pmatrix} 1 \ 4 \ -2 \end{pmatrix} \), \[ \operatorname{proj}_{\vec{b}} \vec{a} = \frac{3 \times 1 + (-2) \times 4 + 1 \times (-2)}{1^2 + 4^2 + (-2)^2} \begin{pmatrix} 1 \ 4 \ -2 \end{pmatrix} = \frac{-7}{21} \begin{pmatrix} 1 \ 4 \ -2 \end{pmatrix}. \]
Vector (Cross) Product
- \( \vec{a} \times \vec{b} \) is perpendicular to both \( \vec{a} \) and \( \vec{b} \) with magnitude \( \lVert \vec{a} \rVert \lVert \vec{b} \rVert \sin\theta \).
- Determinant form: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}. \]
- Result vector orientation follows the right-hand rule.
Example -- Cross product
Take \( \vec{a} = \begin{pmatrix} 2 \ 1 \ -1 \end{pmatrix} \) and \( \vec{b} = \begin{pmatrix} -3 \ 0 \ 4 \end{pmatrix} \). \[ \vec{a} \times \vec{b} = \begin{pmatrix} 1 \times 4 - (-1) \times 0 \ -\bigl(2 \times 4 - (-1) \times (-3)\bigr) \ 2 \times 0 - 1 \times (-3) \end{pmatrix} = \begin{pmatrix} 4 \ -5 \ 3 \end{pmatrix}. \]
Areas and Volumes
- Area of parallelogram spanned by \( \vec{a}, \vec{b} \): \( \lVert \vec{a} \times \vec{b} \rVert \).
- Area of triangle: half the parallelogram area.
- Volume of parallelepiped: \( \lvert \vec{a} \cdot (\vec{b} \times \vec{c}) \rvert \).
Example -- Volume
Let \( \vec{a} = \begin{pmatrix} 1 \ 2 \ 0 \end{pmatrix} \, \vec{b} = \begin{pmatrix} -1 \ 3 \ 1 \end{pmatrix} \, \vec{c} = \begin{pmatrix} 2 \ 0 \ 4 \end{pmatrix} \). \[ \vec{b} \times \vec{c} = \begin{pmatrix} 12 \ 6 \ -6 \end{pmatrix}, \quad \vec{a} \cdot (\vec{b} \times \vec{c}) = 12 + 12 + 0 = 24. \] Volume \( = \lvert 24 \rvert = 24 \) cubic units.
Coplanarity and Shortest Distance
- Three vectors coplanar if scalar triple product is zero.
- Distance from point to line: project difference vector onto perpendicular direction:\[ d = \frac{\lVert (\vec{OP} - \vec{OA}) \times \vec{d} \rVert}{\lVert \vec{d} \rVert}. \]
- Distance between skew lines uses cross product of direction vectors.
Calculator Workflow
- Use GC matrix operations to compute determinants efficiently.
- Some calculators offer direct
dotP
/crossP
; if not, store components and evaluate manually. - Verify perpendicularity by checking \( \vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \).
Exam Watch Points
- Maintain exact forms (square roots) in intermediate steps; round only at the end.
- When describing vector geometry, supplement algebra with a labelled diagram.
- Clearly state direction vectors, normals, and parameters when concluding lines or planes are perpendicular/parallel.
- Double-check sign conventions in determinant expansion to avoid transcription errors.
Quick Revision Checklist
- [ ] Compute dot products, cross products, and projections with confidence.
- [ ] Apply vector product results to area, volume, and distance problems.
- [ ] Diagnose coplanarity and perpendicularity quickly using scalar triple products.
- [ ] Explain geometric interpretations (angles, shortest distances) in full sentences.
Next steps: Tackle Topic 3.3 for vector equations of planes and 3D intersections.