H2 Maths Notes (JC 1-2): 5.1) Differentiation
Download printable cheat-sheet (CC-BY 4.0)07 Oct 2025, 00:00 Z
> **Before you revise**\\ > Memorise derivative rules with the full statement (chain, product, quotient). Practise switching between coordinate, parametric, and implicit forms so you can differentiate anything the paper throws at you. --- ## Core Derivative Rules - Power rule: \\( \frac\{d}\{dx} x^n = nx^\{n-1} \\) for rational \\( n \\). - Product rule: \\( \frac\{d}\{dx}\[uv] = u'v + uv' \\). - Quotient rule: \\( \frac\{d}\{dx}\left( \frac\{u}\{v} \right) = \frac\{u'v - uv'}\{v^2} \\). - Chain rule: \\( \frac\{d}\{dx} f(g(x)) = f'(g(x)) g'(x) \\). - Exponential and logarithmic derivatives: \\( \frac\{d}\{dx} e^{kx} = k e^{kx} \\), \\( \frac\{d}\{dx} \ln x = \frac\{1}\{x} \\). --- ## Trigonometric and Hyperbolic Functions - \\( \frac\{d}\{dx} \sin x = \cos x \\), \\( \frac\{d}\{dx} \cos x = -\sin x \\), \\( \frac\{d}\{dx} \tan x = \sec^2 x \\). - Inverses: \\( \frac\{d}\{dx} \sin^\{-1} x = \frac\{1}\{\sqrt\{1 - x^2}} \\), etc. - Hyperbolic: \\( \frac\{d}\{dx} \sinh x = \cosh x \\), \\( \frac\{d}\{dx} \cosh x = \sinh x \\). --- ## Implicit Differentiation - Differentiate both sides treating \\( y \\) as function of \\( x \\) and solve for \\( \frac\{dy}\{dx} \\). **Example -- Implicit derivative** Given \\( x^2 + xy + y^2 = 7 \\). 1. Differentiate: \\( 2x + y + x \frac\{dy}\{dx} + 2y \frac\{dy}\{dx} = 0 \\). 2. Factor: \\( \left( x + 2y \right) \frac\{dy}\{dx} = -(2x + y) \\). 3. Hence \\( \frac\{dy}\{dx} = -\frac\{2x + y}\{x + 2y} \\). --- ## Parametric Differentiation - For \\( x = f(t) \\), \\( y = g(t) \\): \\( \frac\{dy}\{dx} = \frac\{\frac\{dy}\{dt}}\{\frac\{dx}\{dt}} \\). - Second derivative: \\( \frac\{d^2 y}\{dx^2} = \frac\{1}\{\frac\{dx}\{dt}} \frac\{d}\{dt}\left( \frac\{dy}\{dx} \right) \\). **Example -- Parametric slope** Given \\( x = t^2 + 1 \\), \\( y = \ln(1 + t) \\). 1. \\( \frac\{dx}\{dt} = 2t \\, \frac\{dy}\{dt} = \frac\{1}\{1 + t} \\). 2. \\( \frac\{dy}\{dx} = \frac\{1}\{2t(1 + t)} \\). --- ## Tangents and Normals - Tangent gradient \\( m_t = \frac\{dy}\{dx} \\) at point; normal gradient \\( m_n = -\frac\{1}\{m_t} \\). - Tangent line: \\( y - y_0 = m_t (x - x_0) \\). - Normal line: \\( y - y_0 = m_n (x - x_0) \\). **Example -- Tangent to curve** Find tangent at \\( x = 1 \\) for \\( y = x e^{-x} \\). 1. \\( \frac\{dy}\{dx} = e^{-x} - x e^{-x} = e^{-x}(1 - x) \\). 2. At \\( x = 1 \\), gradient zero → tangent horizontal: \\( y = \frac\{1}\{e} \\). --- ## Optimisation and Stationary Points - Stationary points satisfy \\( \frac\{dy}\{dx} = 0 \\); classify with second derivative test. - Second derivative: \\( \frac\{d^2 y}\{dx^2} > 0 \\) (minimum), \\( \< 0 \\) (maximum), zero → investigate further. - For optimisation, interpret result in context (length, area, cost). **Example -- Optimisation** Minimise surface area of open-top box with base square of side \\( x \\) and volume \\( 108 \pu\{cm3} \\). 1. Height \\( h = \frac\{108}\{x^2} \\). 2. Surface area \\( S = x^2 + 4xh = x^2 + \frac\{432}\{x} \\). 3. Differentiate: \\( \frac\{dS}\{dx} = 2x - \frac\{432}\{x^2} = 0 \Rightarrow 2x^3 = 432 \\). 4. \\( x = \sqrt\[3]\{216} = 6 \\), \\( h = 3 \\). --- ## Related Rates - Differentiating implicit relationships with respect to time: \\( \frac\{dz}\{dt} = \frac\{dz}\{dx} \frac\{dx}\{dt} \\). **Example -- Expanding circle** A circle radius \\( r \\) grows at \\( \frac\{dr}\{dt} = 0.2 \pu\{cm.s-1} \\). Find rate of change of area when \\( r = 5 \pu\{cm} \\). 1. Area \\( A = \pi r^2 \\). 2. \\( \frac\{dA}\{dt} = 2\pi r \frac\{dr}\{dt} = 2\pi \times 5 \times 0.2 = 2\pi \pu\{cm2.s-1} \\). --- ## Calculator Workflow - GC differentiation function evaluates derivatives numerically; record inputs (e.g. `d/dx` at specific points). - Use `TABLE` to evaluate derivative sign around stationary points for classification. - Store intermediate expressions to avoid algebra slips when differentiating complex functions. --- ## Exam Watch Points - Present exact derivatives before substituting numerical values. - State the method used (implicit, parametric) and justify each step clearly. - Include units in related-rates answers. - For optimisation, verify solutions satisfy constraints (positive dimensions, etc.). --- ## Quick Revision Checklist - \[ ] Apply product, quotient, and chain rules without hesitation. - \[ ] Differentiate implicit and parametric relations, reporting ( \frac\{dy}\{dx} ) clearly. - \[ ] Evaluate tangents, normals, and stationary points with proper classification. - \[ ] Tackle optimisation and related-rate problems with a structured plan and unit-aware answers. Next steps: Move to Topic 5.2 for Maclaurin series expansion techniques.