H2 Maths Notes (JC 1-2): 5.3) Integration Techniques
Download printable cheat-sheet (CC-BY 4.0)07 Oct 2025, 00:00 Z
Before you revise\ Build a flowchart for integration: recognise the pattern (substitution, parts, partial fractions, trigonometric identities) before diving in. Always write differential substitutions explicitly.
Core Formulae
- Reverse of differentiation rules (power, exponential, trigonometric, logarithmic).
- Integration by substitution: choose \( u = g(x) \) to simplify integrand, rewrite \( dx = \frac{du}{g'(x)} \).
- Integration by parts: \( \int u \space dv = uv - \int v \space du \).
- Partial fractions: decompose rational functions into simpler fractions before integrating.
Substitution Examples
Example -- Trigonometric substitution
Evaluate \( \int \frac{2x}{x^2 + 1} \space dx \).
- Let \( u = x^2 + 1 \) ⇒ \( du = 2x \space dx \).
- Integral becomes \( \int \frac{1}{u} \space du = \ln\lvert u \rvert + C = \ln\lvert x^2 + 1 \rvert + C \).
Example -- Exponential substitution
Evaluate \( \int x e^{x^2} \space dx \).
- Let \( u = x^2 \) ⇒ \( du = 2x \space dx \).
- Integral \( = \tfrac{1}{2} \int e^{u} \space du = \tfrac{1}{2} e^{x^2} + C \).
Integration by Parts
- Choose \( u \) to simplify upon differentiation; set \( dv \) as remaining factor.
- For repeated parts, loop until integral becomes elementary.
Example -- \( x \cos x \)
Take \( u = x \space dv = \cos x \space dx \). \[ \int x \cos x \space dx = x \sin x - \int \sin x \space dx = x \sin x + \cos x + C. \]
Example -- Reduction formula
For \( I_n = \int x^n e^x \space dx \), set \( u = x^n \space dv = e^x \space dx \): \[ I_n = x^n e^x - n \int x^{n-1} e^x \space dx = x^n e^x - n I_{n-1}. \]
Partial Fractions
- Proper rational functions: express as sum of linear/quadratic factors.
- For repeated factors, include each power up to multiplicity.
- For irreducible quadratics, use ( \frac{Ax + B}{quadratic} ).
Example -- Partial fraction integral
Evaluate \( \int \frac{3x + 5}{x^2 - x - 2} \space dx \).
- Factor denominator: \( (x - 2)(x + 1) \).
- Decompose: \( \frac{3x + 5}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1} \).
- Solve for \( A = 2 \space B = 1 \).
- Integrate: \( \int \left( \frac{2}{x - 2} + \frac{1}{x + 1} \right) dx = 2 \ln\lvert x - 2 \rvert + \ln\lvert x + 1 \rvert + C \).
Trigonometric Identities
- Use \( \sin^2 x = \tfrac{1}{2}(1 - \cos 2x) \), \( \cos^2 x = \tfrac{1}{2}(1 + \cos 2x) \), and \( \sin x \cos x = \tfrac{1}{2} \sin 2x \).
- For integrals of \( \sec x \) or \( \tan x \), multiply numerator and denominator to match derivatives.
Example -- \( \int \sec^2 x \)
Recognise derivative of \( \tan x \: \) \( \int \sec^2 x \space dx = \tan x + C \).
Improper Integrals and Convergence
- Evaluate limits for infinite bounds or singularities: [ \int_1^\infty \frac{1}{x^p} \space dx \text{ converges iff } p > 1. ]
- For improper points inside interval, split integral and take limits.
Calculator Workflow
- Use GC to confirm antiderivatives by differentiating results.
- Numerical integration (
∫f(x)dx
) checks definite integrals; still show analytical steps. - Store substitution results before back-substituting to reduce mistakes.
Exam Watch Points
- Explicitly state substitution and new limits for definite integrals.
- Include constant of integration for indefinite integrals.
- Handle absolute values in logarithms when integrating rational functions.
- Justify convergence when dealing with improper integrals.
Quick Revision Checklist
- [ ] Identify the right technique (substitution, parts, partial fractions) for each integrand.
- [ ] Carry out algebraic manipulations cleanly before integrating.
- [ ] Evaluate definite integrals with correct limits and substitution steps.
- [ ] Discuss convergence for improper integrals and document limit processes.
Next steps: Study Topic 5.4 for definite integrals and area/volume applications.