H2 Maths Notes (JC 1-2): 4.1) Complex Numbers and Argand Diagrams
Download printable cheat-sheet (CC-BY 4.0)07 Oct 2025, 00:00 Z
Before you revise\ Keep polar and exponential forms side by side—most Argand proofs demand switching between them quickly. Draw every locus and label arguments clearly.
Core Definitions
- Complex number \( z = x + iy \) with real part \( x \) and imaginary part \( y \).
- Modulus \( \lvert z \rvert = \sqrt{x^2 + y^2} \); argument \( \arg z \) is the angle from positive real axis.
- Polar form: \( z = r(\cos \theta + i \sin \theta) \) with \( r = \lvert z \rvert \space \theta = \arg z \).
- Exponential form: \( z = r e^{i\theta} \).
Algebra of Complex Numbers
- Addition/subtraction: combine real and imaginary parts.
- Multiplication: \( (a + ib)(c + id) = (ac - bd) + i(ad + bc) \).
- Division: multiply numerator and denominator by complex conjugate.
- Conjugate \( \bar{z} = x - iy \); satisfies \( z \bar{z} = \lvert z \rvert^2 \).
Example -- Division
Compute \( \frac{3 + 4i}{1 - 2i} \). \[ \frac{3 + 4i}{1 - 2i} \times \frac{1 + 2i}{1 + 2i} = \frac{(3 + 4i)(1 + 2i)}{1 + 4} = \frac{3 + 6i + 4i + 8i^2}{5} = \frac{-5 + 10i}{5} = -1 + 2i. \]
Polar Form and De Moivre
- Convert using \( r = \sqrt{x^2 + y^2} \), \( \theta = \operatorname{atan2}(y, x) \).
- De Moivre: \( [r(\cos \theta + i \sin \theta)]^n = r^n (\cos n\theta + i \sin n\theta) \).
- Roots: \( z^n = w \) has roots \( r^{1/n} \left( \cos\frac{\theta + 2k\pi}{n} + i \sin\frac{\theta + 2k\pi}{n} \right) \).
Example -- Cube roots
Solve \( z^3 = 8(\cos \pi + i \sin \pi) \).
- \( r = 8 \), \( \theta = \pi \).
- Roots: \( 2 \left( \cos\frac{\pi + 2k\pi}{3} + i \sin\frac{\pi + 2k\pi}{3} \right) \) for \( k = 0, 1, 2 \).
- Gives \( 2\bigl( \cos \tfrac{\pi}{3} + i \sin \tfrac{\pi}{3} \bigr), 2\bigl( \cos \pi + i \sin \pi \bigr), 2\bigl( \cos \tfrac{5\pi}{3} + i \sin \tfrac{5\pi}{3} \bigr) \).
Loci on the Argand Plane
- \( \lvert z - a \rvert = r \) represents a circle centre \( a \) radius \( r \).
- \( \arg(z - a) = \theta \) is a ray from \( a \) making angle \( \theta \).
- Linear loci: express \( z = x + iy \), substitute into condition, separate into real/imaginary parts to get Cartesian equation of line/curve.
Example -- Perpendicular bisector
Locus of points equidistant from \( 2 + i \) and \( -1 + 3i \):
\[ \lvert z - (2 + i) \rvert = \lvert z - (-1 + 3i) \rvert. \]
Let \( z = x + iy \). Squaring both sides yields \( (x - 2)^2 + (y - 1)^2 = (x + 1)^2 + (y - 3)^2 \) which simplifies to \( 6x - 4y + 2 = 0 \).
Inequalities and Regions
- \( \lvert z - a \rvert \leq r \) is a closed disk; \( < ) gives interior.
- Combined inequalities create lens or annulus regions; sketch boundaries first, then shade interior.
- Argument inequalities produce sector regions between rays.
Calculator Workflow
- Use GC complex mode to check arithmetic; ensure calculator is in radians for argument work.
- Store complex numbers in memory to avoid transcription errors during De Moivre calculations.
- For loci, use graphing mode with implicit equations to cross-check manual sketches.
Exam Watch Points
- Always state principal value of argument in the interval requested (usually \( -\pi < \arg z \leq \pi \)).
- When sketching loci, mark intercepts, centre, radius, and boundary style (solid/dashed).
- Provide exact trigonometric forms—avoid rounding angles unless final answer requires degrees.
- For De Moivre problems, list all distinct roots; avoid duplicates caused by missing the \( 2k\pi \) term.
Quick Revision Checklist
- [ ] Convert between Cartesian, polar, and exponential forms fluently.
- [ ] Perform conjugation, modulus, and division confidently.
- [ ] Sketch loci derived from modulus and argument conditions with accurate annotations.
- [ ] Apply De Moivre to powers and roots, checking for all distinct solutions.
Next steps: Continue with Topic 5.1 to reinforce differentiation techniques used throughout Section A.