H2 Maths Notes (JC 1-2): 5.4) Definite Integrals
Download printable cheat-sheet (CC-BY 4.0)07 Oct 2025, 00:00 Z
Before you revise\ Always sketch the region before integrating. Label intercepts, intersection points, and orientation so you do not mix up top/bottom or left/right functions.
Fundamental Theorem
- If \( F'(x) = f(x) \), then \( \int_a^b f(x) \space dx = F(b) - F(a) \).
- Properties: linearity, additivity over intervals, and reversal of limits introducing a negative sign.
Areas Between Curves
- For vertical slices: \( \int_a^b \bigl( y_\text{top} - y_\text{bottom} \bigr) \space dx \).
- For horizontal slices: \( \int_c^d \bigl( x_\text{right} - x_\text{left} \bigr) \space dy \).
- Determine intersection points by solving \( y_\text{top} = y_\text{bottom} \).
Example -- Area enclosed
Find area between \( y = x^2 \) and \( y = 2x + 3 \).
- Intersections solve \( x^2 = 2x + 3 \) ⇒ \( x = -1, 3 \).
- Area \( = \int_{-1}^3 \bigl(2x + 3 - x^2\bigr) dx = \left[ x^2 + 3x - \tfrac{x^3}{3} \right]_{-1}^3 = \tfrac{32}{3} \).
Volumes of Revolution
- About x-axis: \( V = \pi \int_a^b y^2 \space dx \).
- About y-axis: \( V = \pi \int_c^d x^2 \space dy \).
- Shell method (if convenient): \( V = 2\pi \int_a^b x y \space dx \).
Example -- Volume
Region under \( y = \sqrt{x} \) from \( x = 0 \) to \( x = 4 \) revolved about x-axis: \[ V = \pi \int_0^4 x \space dx = \pi \left[ \tfrac{x^2}{2} \right]_0^4 = 8\pi. \]
Mean Value and Average
- Average value of \( f(x) \) on \( [a, b] \): \( \bar{f} = \frac{1}{b - a} \int_a^b f(x) \space dx \).
- For probability density functions, integrals compute probabilities and expected values.
Integration with Modulus or Piecewise Functions
- Identify breakpoints where expression changes sign.
- Split integral into segments where expression simplifies without modulus.
Example -- Modulus
Evaluate \( \int_{-2}^3 \lvert x - 1 \rvert dx \).
- Break at \( x = 1 \): \ \[ \int_{-2}^1 (1 - x) dx + \int_1^3 (x - 1) dx = \left[ x - \tfrac{x^2}{2} \right]_{-2}^1 + \left[ \tfrac{x^2}{2} - x \right]_1^3 = \tfrac{13}{2}. \]
Improper Definite Integrals
- Use limits for infinite bounds or discontinuities within interval.
- Example: \( \int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{\epsilon \to 0^+} \int_{\epsilon}^1 x^{-1/2} dx = 2 \).
Calculator Workflow
- Use GC definite integral function to verify numeric value after completing manual steps.
- When dealing with piecewise functions, evaluate each segment separately on the GC as a check.
- Document the command (e.g.
∫(2x+3-x^2,x,-1,3)
) in working if used.
Exam Watch Points
- Always sketch the region and label axes/limits.
- For revolutions, specify axis clearly and include \( \pi \) factor.
- State units (square or cubic) when context demands.
- Justify convergence when evaluating improper integrals.
Quick Revision Checklist
- [ ] Compute areas between curves accurately with correct limits and integrands.
- [ ] Derive volumes of revolution using shell or disk method as appropriate.
- [ ] Handle modulus and piecewise integrals by splitting at critical points.
- [ ] Evaluate improper integrals with proper limit notation and convergence checks.
Next steps: Finish Section 5.5 on differential equations to complete the calculus module.