IP AMaths Notes (Upper Sec, Year 3-4): 08) Plane Geometry with Algebra
Download printable cheat-sheet (CC-BY 4.0)08 Nov 2025, 00:00 Z
Upper-sec paper setters mix Euclidean geometry with algebraic coordinates. Treat every diagram as an algebra system: assign variables, write equations, then solve.
Key reminders
- Interior angles of a triangle sum to \( \pi \) rad (\( 180^\circ \)).
- Circle theorems still apply with coordinates: equal chords subtend equal angles, angle at centre is twice the angle at circumference, cyclic quadrilaterals have opposite angles summing to \( \pi \).
- Similar triangles justify proportions such as \( \dfrac{AB}{DE} = \dfrac{AC}{DF} \) when \( \triangle ABC \sim \triangle DEF \).
- Right triangles unlock Pythagoras and the primary trig ratios.
Worked example 1 — Coordinate angle chase
In \( \triangle ABC \), points \( A(0, 0) \), \( B(6, 0) \), and \( C(2, 4) \). Find \( \angle ACB \) in radians.
- Form vectors \( \vec{CA} = (-2, -4) \) and \( \vec{CB} = (4, -4) \).
- Dot product: \( \vec{CA} \cdot \vec{CB} = (-2)(4) + (-4)(-4) = 8 \).
- Magnitudes: \( \lVert \vec{CA} \rVert = \sqrt{(-2)^2 + (-4)^2} = \sqrt{20} \); \( \lVert \vec{CB} \rVert = \sqrt{4^2 + (-4)^2} = \sqrt{32} \).
- Hence \( \cos \angle ACB = \dfrac{8}{\sqrt{20}\sqrt{32}} = \dfrac{1}{\sqrt{10}} \).
- So \( \angle ACB = \arccos\bigl(10^{-1/2}\bigr) \approx 1.249 \) rad.
Worked example 2 — Similar triangles with algebra
An isosceles triangle has equal sides of length \( x \) and base \( 6 \). Its height is \( 4 \). Find \( x \) and the vertex angle.
- Altitude splits the base: each half is \( 3 \).
- Right triangle gives \( x^2 = 4^2 + 3^2 = 25 \) so \( x = 5 \).
- Let vertex angle be \( \theta \); then \( \cos \dfrac{\theta}{2} = \dfrac{3}{5} \).
- Therefore \( \theta = 2 \arccos \left(\dfrac{3}{5}\right) = 2.214 \) rad (3 s.f.).
Try this
Construct coordinates for four points on a circle of radius \( 5 \) whose central angles are \( 70^\circ \), \( 110^\circ \), \( 140^\circ \), and \( 40^\circ \). Verify numerically that opposite angles of the resulting cyclic quadrilateral sum to \( \pi \).