IP AMaths Notes (Upper Sec, Year 3-4): 11) Modulus Functions
Download printable cheat-sheet (CC-BY 4.0)08 Nov 2025, 00:00 Z
Modulus expressions measure distance from zero. Convert them into piecewise linear forms to analyse turning points and solve inequalities.
Fundamental identities
- \( |x| = \begin{cases} x & x \geq 0 \ -x & x < 0 \end{cases} \).
- \( |ax + b| = |a| \cdot \bigl|x + \tfrac{b}{a}\bigr| \) for \( a \neq 0 \).
- Solve \( |f(x)| = c \) by considering \( f(x) = c \) and \( f(x) = -c \).
Worked example 1 — Piecewise sketch
Sketch \( y = |2x - 3| - 1 \).
- Set \( 2x - 3 = 0 \) → \( x = \tfrac{3}{2} \).
- For \( x \geq \tfrac{3}{2} \), \( y = 2x - 3 - 1 = 2x - 4 \).
- For \( x < \tfrac{3}{2} \), \( y = -(2x - 3) - 1 = -2x + 2 \).
- Plot both lines; the vertex occurs at \( \bigl(\tfrac{3}{2}, -1\bigr) \).
Worked example 2 — Modulus inequality
Solve \( |x - 4| \leq 3 \).
- Write double inequality: \( -3 \leq x - 4 \leq 3 \).
- Add \( 4 \) throughout: \( 1 \leq x \leq 7 \).
Now solve \( |2x + 5| > 9 \).
- Either \( 2x + 5 > 9 \) or \( 2x + 5 < -9 \).
- First case: \( 2x > 4 \) → \( x > 2 \).
- Second case: \( 2x < -14 \) → \( x < -7 \).
Solution: \( x < -7 \) or \( x > 2 \).
Try this
Rewrite \( y = |x + 1| + |x - 3| \) as piecewise linear segments and determine the minimum value of \( y \).