IP AMaths Notes (Upper Sec, Year 3-4): 15) Differentiation Techniques
Download printable cheat-sheet (CC-BY 4.0)08 Nov 2025, 00:00 Z
Beyond single-term powers, you need compound rules to differentiate efficiently.
Rules
- Product: \( \dfrac{\mathrm{d}}{\mathrm{d}x}(uv) = u'v + uv' \).
- Quotient: \( \dfrac{\mathrm{d}}{\mathrm{d}x}\biggl(\dfrac{u}{v}\biggr) = \dfrac{u'v - uv'}{v^2} \) for \( v \neq 0 \).
- Chain: \( \dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{\mathrm{d}y}{\mathrm{d}u} \cdot \dfrac{\mathrm{d}u}{\mathrm{d}x} \).
- Implicit: differentiate both sides treating \( y \) as function of \( x \).
Worked example 1 — Product rule
Differentiate \( y = (3x^2 - 1)(2x + 5) \).
- Let \( u = 3x^2 - 1 \), \( v = 2x + 5 \).
- Then \( u' = 6x \), \( v' = 2 \).
- \( y' = u'v + uv' = 6x(2x + 5) + (3x^2 - 1)(2) \).
- Expand: \( y' = 12x^2 + 30x + 6x^2 - 2 = 18x^2 + 30x - 2 \).
Worked example 2 — Implicit differentiation
Given \( x^2 + xy + y^2 = 9 \), find \( \dfrac{dy}{dx} \).
- Differentiate term by term:
- \( \dfrac{\mathrm{d}}{\mathrm{d}x}(x^2) = 2x \).
- For \( xy \), use product rule: \( x \dfrac{\mathrm{d}y}{\mathrm{d}x} + y \).
- \( \dfrac{\mathrm{d}}{\mathrm{d}x}(y^2) = 2y \dfrac{\mathrm{d}y}{\mathrm{d}x} \).
- Combine: \( 2x + x \dfrac{\mathrm{d}y}{\mathrm{d}x} + y + 2y \dfrac{\mathrm{d}y}{\mathrm{d}x} = 0 \).
- Group derivatives: \( \bigl(x + 2y\bigr) \dfrac{\mathrm{d}y}{\mathrm{d}x} = -2x - y \).
- Thus \( \dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{-2x - y}{x + 2y} \).
Try this
Differentiate \( y = \dfrac{\sin x}{x^2} \) and state where the derivative is undefined.